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Asymmetric synthesis of chiral-branched amines, ubiquitous
substructures within natural products and other biologically active
synthetic targets, is underdeveloped relative to that of other
functional groups. Consequently, commonly used indirect syn-
thetic methods exploit stepwise introduction of carbearbon

bonds, stereogenic centers, and nitrogen (e.g., epoxide openingi
with N-nucleophiles). Direct asymmetric amine synthesis by |

addition of carbon nucleophiles to the=®l bond of carbonyl
imino derivatives holds promise for improved efficiency by
introducing the stereogenic center and carbearbon bond in

one step. However, employing basic organometallic reagents for

this purposéoften results in competing aza-enolizafi@md can
lack generality or functional group tolerance, while Stregkand
Mannich® reactions restrict the incoming nucleophile to cyanide

and enolizable carbonyl compounds, respectively. Versatile new

stereocontrolled carbercarbon bond construction methods for
direct asymmetric amine synthesis under mild conditions are
therefore in high demand.

To address the general problem of asymmetric amine synthesis

nonpolar radical additions to=€N bonds$-° (Figure 1) would (a)
circumvent imine enolization problems, (b) efficiently construct
crowded C-C bonds, and (c) avoid some functional group

restrictions associated with ionic transformations. Stereocontrolled

intermolecular radical additi6to C=N bonds was unknown until
Naito” and Bertrantlindependently reported additions to chiral

glyoxylate and malonate imino derivatives. In these cases the

nearby carbonyl groups were required to activate the radical
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Figure 1. Retrosynthetic analysis of chiratbranched amines according
to a radical addition strategy and potential origins of stereocontrol.
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Figure 2. (a) Design of a hypothetical-linked auxiliary approach for
tereocontrolled radical addition to=\ bonds, with Lewis acid (LA)
helation inducing a rigid, electronically activated radical acceptor. (b)
mplementation withiN-acylhydrazones derived from 4-benzyl-2-oxazo-
lidinone.

acceptor or attach a chiral auxiliary. Obviating these requirements
would considerably enhance the versatility of radical additions
for asymmetric amine synthesis. Toward this end, we envisioned
a nitrogen-linked auxiliary approach incorporating Lewis acid
activation and restriction of rotamer populations as key design
elements. We now disclose preparation of ndN«@cylhydrazones
from N-amino-4-benzyl-2-oxazolidinone and their implementation
for highly enantioselective intermolecular radical addition reac-
tions.

We first focused on incorporating features desirable for stereo-
control, namelyrestricted rotamer populationand Lewis acid
activation, beginning with a hydrazone with a proximal stereo-
genic centerA, Figure 2). Constraining the-€N bond within a
ring and including a carbonyl group would enable two-point
binding of a Lewis acid to afford a rigid structurB)(with the
stereocontrol element localized over one face of the hydrazone.
The Lewis acid would also increase reactivity toward nucleophilic
radical§ by lowering the LUMO energy of the €N bond.
Finally, we noted the facility of reductive cleavage of-N
bondst¢°whereby theN-linked auxiliary would be released for
reuse after stereoisomer purification. Oxazolidinéh®emerged
as obvious initial candidates to test our hypothesis. Surprisingly,
N-amino derivatives of oxazolidinones have appeared in the
literature only rarely? and to our knowledge have never been
used for asymmetric synthesis.
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Table 1. Survey of Lewis Acids for Promotion of Radical
Addition to Propionaldehyde Hydrazo@e(Scheme 1)

yield of recovery  product ratio

entry Lewis acid 9c, %2 of 3, % (9c:9b:9q)°

1 none NR

2 BFR;-Et,O 0 0:0:100

3 MgBr, NR

4 Yb(OTf)s 32 96:4:0

5 InCls 55 92:8:0

6 ZnCh 60 29 91:9:0

7 Zn(OTfy 53 24 93:7:0

2 |solated yield of puréc (R? = 'Pr). NR= no reaction. Reaction
conditions: BySnH (5 equiv) and &7 mL/mmol3) by syringe pump,
"Prl (10 equiv), E4B (10 equiv), and Lewis acid (2 equiv), 2:1 QEl,/
ether,—78°C — room temperaturé.9a. R?=H. 9b: R? = Et. Ratios
by 'H NMR spectra after removal of tin residues.

Experimental evaluation of our design hypothesis began with
preparation of the requisite hydrazones. Amination of com-
mercially available §-4-benzyl-2-oxazolidinonel( Scheme 1)
with n-butyllithium andO-(mesitylenesulfonyl)hydroxylamifg-d
gave N-aminooxazolidinone (75% vyield). Condensation with
various aldehydes (tolueng:toluenesulfonic acid catalyst) af-
forded chiralN-acylhydrazone8—8 as single isomers in 92
96% vyield from2. Alternatively, introduction of aldehydes directly
to the amination reaction mixture gave hydrazones via a conve-
nient one-pot protocol.

A survey of a variety of simple Lewis acids in isopropyl radical
addition (BuSnH, EtB/O,*) to hydrazone3 (Scheme 1, Table
1) revealed initially that Lewis acid was required for the reaction
(entry 1). With BR-OE%, undesired &N reduction occurred to
afford 9a in quantitative yield within 5 min, indicating th&
was remarkably prone to Lewis acid activatiéMagnesium salts
did not promote radical addition (entry 3), while ytterbium triflate
(entry 4) gave modest yields. On the other hand, =@t Zn(Il)
salts afforded clean (albeit incomplete) conversion to desired
adduct9c (entries 5-7).16 Gratifyingly, initial examination by
IH NMR spectroscopy showed a single diastereomer@B:2).

For diastereoselectivity analysis in radical additions, we selected
hydrazones3 and 7 with ZnCl, as the Lewis acid promoter

(13) (a) Kim, M.; White, J. D.J. Am. Chem. Sod977, 99, 1172. (b)
Ciufolini, M. A.; Shimizu, T.; Swaminathan, S.; Xi, Nletrahedron Lett1997,

38, 4947. (c) Evans, D. A.; Johnson, D. Srg. Lett.1999 1, 595. (d) The
more convenienN-electrophileO-(diphenylphosphinyl)hydroxylamine also
gives reliable results in the amination b{73—79%). Details will be reported
elsewhere.

(14) Nozaki, K.; Oshima, K.; Utimoto, KBull. Chem. Soc. Jpri991, 64,
403. Brown, H. C.; Midland, M. MAngew. Chem., Int. Ed. Endl972 11,
692.

(15) Reduction (BsSnH, BR-OEL) of N-acylhydrazones proved to be
generally efficient; from appropriate ketoiacylhydrazones, both diaster-
eomers oPc—f and10c—f were acquired for characterization purposes (see
Supporting Information).

(16) Separable ethyl radical add@tt (or 10b) was observed<10% yield)
in all cases. The remaining mass balance was unreacted hydraZong).
Primary halides have thus far given low yields in these reactions, presumably
due to ineffective chain transféPreliminary experiments witB gavel as
the major product (57% vyield).
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Table 2. Radical Addition Reactions of Various Alkyl lodides
with Hydrazones3 and7 in the Presence of Zngl

product, diastereomer
entry R R? yield (%) ratio®
1 Et Pr 9c, 60 99:1
2 Et €CsHy 9d, 59 96:4
3 Et cCeHll 9e, 28 97:3
4 Et Bu of, 54 95:5
5 Ph iPr 10c¢, 42 99:1
6 Ph €CsHy 10d, 59 96:4
7 Ph cCeHll lOe, 30 99:1
8 Ph ‘Bu 10f, 83 937

a|solated yield ? Ratios by HPLC 9c—f) or GCMS (LOc—f) versus
authentic mixtures. In separate reactions, diastereomer rattesaofd
9f were reproduced within 0.5% Reaction conditions: see Table 1.
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(Table 2). With various secondary and tertiary alkyl iodide radical
precursors, we were delighted to find that additions to &th
and7 occurred withexcellent stereocontrol in all casés afford
N-acylhydrazine€9c—f and 10c—f.1® Chemical correlation and
X-ray crystallographic analysis confirmed the absolute configura-
tions of 9c and 10f.}” After N-benzoylation of9c (Scheme 2),
exposure ofl1to Smb° cleanly affordedl2 (99% yield) andl
(97% yield) within 5 min.

In conclusion, a noveN-acylhydrazone auxiliary approach
gives excellent stereocontrol in radical addition te=I€ bonds.
Notably, this is the first such radical addition that does not require
adjacent carbonyl functionality for auxiliary linkage or acceptor
activation. In contrast to related additions ¢gS3-unsaturated
amides which require a larger blocking grodp® the simple
benzyl control element affords high selectivity in all cases
examined. This distinction can be attributed to the closer proximity
of the control element and acceptor carbon in hydrazGreesd
7 relative toN-enoyloxazolidinones, resulting in more effective
steric blocking while limiting rotational freedom. With excellent
stereocontrol now at hand, evaluation of additional hydrazones,
reaction optimization, and modifications to facilitate direct
auxiliary removal are underway, as are efforts toward chiral Lewis
acid catalysis.
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(17) Configurations o8d—f and 10c—e are assigned by analogy wifit
and10f. These are consistent with modg{Figure 2), although the available
data do not permit rigorous exclusion of alternative substragavis acid
binding modes. (a))-Valinol was converted td2 with [o]p +10.0 € 1.0,
CHCl) by treatment of itdN-Boc-O-tosylate derivative with MgCulLi followed
by interchange of the carbamate to benzamide. (b) Benzoylatid@f¢81%
yield) as indicated in Scheme 2 gave material suitable for X-ray crystallography
(see Supporting Information).

(18) Sibi et al. found that 4-(diphenylmethyl)-2-oxazolidinone was needed
for good stereocontrol (d+ 45:1) in isopropyl radical addition th-cinnamoy!
derivatives (4-benzyl-2-oxazolidinone gave=r2:1)12°



